Domain Adaptation for Machine Translation with Instance Selection
نویسندگان
چکیده
منابع مشابه
Domain Adaptation for Machine Translation with Instance Selection
Domain adaptation for machine translation (MT) can be achieved by selecting training instances close to the test set from a larger set of instances. We consider 7 different domain adaptation strategies and answer 7 research questions, which give us a recipe for domain adaptation in MT. We perform English to German statistical MT (SMT) experiments in a setting where test and training sentences c...
متن کاملDiscriminative Instance Weighting for Domain Adaptation in Statistical Machine Translation
We describe a new approach to SMT adaptation that weights out-of-domain phrase pairs according to their relevance to the target domain, determined by both how similar to it they appear to be, and whether they belong to general language or not. This extends previous work on discriminative weighting by using a finer granularity, focusing on the properties of instances rather than corpus component...
متن کاملInstance Weighting for Neural Machine Translation Domain Adaptation
Instance weighting has been widely applied to phrase-based machine translation domain adaptation. However, it is challenging to be applied to Neural Machine Translation (NMT) directly, because NMT is not a linear model. In this paper, two instance weighting technologies, i.e., sentence weighting and domain weighting with a dynamic weight learning strategy, are proposed for NMT domain adaptation...
متن کاملImproved Domain Adaptation for Statistical Machine Translation
We present a simple and effective infrastructure for domain adaptation for statistical machine translation (MT). To build MT systems for different domains, it trains, tunes and deploys a single translation system that is capable of producing adapted domain translations and preserving the original generic accuracy at the same time. The approach unifies automatic domain detection and domain model...
متن کاملFast Domain Adaptation for Neural Machine Translation
Neural Machine Translation (NMT) is a new approach for automatic translation of text from one human language into another. The basic concept in NMT is to train a large Neural Network that maximizes the translation performance on a given parallel corpus. NMT is gaining popularity in the research community because it outperformed traditional SMT approaches in several translation tasks at WMT and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Prague Bulletin of Mathematical Linguistics
سال: 2015
ISSN: 1804-0462
DOI: 10.1515/pralin-2015-0001